Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Color Refinement, Homomorphisms, and Hypergraphs (1903.12432v1)

Published 29 Mar 2019 in cs.DM and math.CO

Abstract: Recent results show that the structural similarity of graphs can be characterized by counting homomorphisms to them: the Tree Theorem states that the well-known color-refinement algorithm does not distinguish two graphs G and H if and only if, for every tree T, the number of homomorphisms Hom(T,G) from T to G is equal to the corresponding number Hom(T,H) from T to H (Dell, Grohe, Rattan 2018). We show how this approach transfers to hypergraphs by introducing a generalization of color refinement. We prove that it does not distinguish two hypergraphs G and H if and only if, for every connected Berge-acyclic hypergraph B, we have Hom(B,G) = Hom(B,H). To this end, we show how homomorphisms of hypergraphs and of a colored variant of their incidence graphs are related to each other. This reduces the above statement to one about vertex-colored graphs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.