Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When topological derivatives met regularized Gauss-Newton iterations in holographic 3D imaging (1903.12202v1)

Published 28 Mar 2019 in physics.optics and eess.IV

Abstract: We propose an automatic algorithm for 3D inverse electromagnetic scattering based on the combination of topological derivatives and regularized Gauss-Newton iterations. The algorithm is adapted to decoding digital holograms. A hologram is a two-dimensional light interference pattern that encodes information about three-dimensional shapes and their optical properties. The formation of the hologram is modeled using Maxwell theory for light scattering by particles. We then seek shapes optimizing error functionals which measure the deviation from the recorded holograms. Their topological derivatives provide initial guesses of the objects. Next, we correct these predictions by regularized Gauss-Newton techniques. In contrast to standard Gauss-Newton methods, in our implementation the number of objects can be automatically updated during the iterative procedure by new topological derivative computations. We show that the combined use of topological derivative based optimization and iteratively regularized Gauss-Newton methods produces fast and accurate descriptions of the geometry of objects formed by multiple components with nanoscale resolution, even for a small number of detectors and non convex components aligned in the incidence direction. The method could be applied in general imaging set-ups involving other waves (microwave imaging, elastography...) provided closed-form expressions for the topological and Frechet derivatives are determined.

Citations (23)

Summary

We haven't generated a summary for this paper yet.