Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AED-Net: An Abnormal Event Detection Network (1903.11891v1)

Published 28 Mar 2019 in cs.CV

Abstract: It is challenging to detect the anomaly in crowded scenes for quite a long time. In this paper, a self-supervised framework, abnormal event detection network (AED-Net), which is composed of PCAnet and kernel principal component analysis (kPCA), is proposed to address this problem. Using surveillance video sequences of different scenes as raw data, PCAnet is trained to extract high-level semantics of crowd's situation. Next, kPCA,a one-class classifier, is trained to determine anomaly of the scene. In contrast to some prevailing deep learning methods,the framework is completely self-supervised because it utilizes only video sequences in a normal situation. Experiments of global and local abnormal event detection are carried out on UMN and UCSD datasets, and competitive results with higher EER and AUC compared to other state-of-the-art methods are observed. Furthermore, by adding local response normalization (LRN) layer, we propose an improvement to original AED-Net. And it is proved to perform better by promoting the framework's generalization capacity according to the experiments.

Citations (38)

Summary

We haven't generated a summary for this paper yet.