Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Fusion Encoder Decoder Network For Automatic Liver Lesion Segmentation (1903.11834v1)

Published 28 Mar 2019 in cs.CV and cs.LG

Abstract: Liver lesion segmentation is a difficult yet critical task for medical image analysis. Recently, deep learning based image segmentation methods have achieved promising performance, which can be divided into three categories: 2D, 2.5D and 3D, based on the dimensionality of the models. However, 2.5D and 3D methods can have very high complexity and 2D methods may not perform satisfactorily. To obtain competitive performance with low complexity, in this paper, we propose a Feature-fusion Encoder-Decoder Network (FED-Net) based 2D segmentation model to tackle the challenging problem of liver lesion segmentation from CT images. Our feature fusion method is based on the attention mechanism, which fuses high-level features carrying semantic information with low-level features having image details. Additionally, to compensate for the information loss during the upsampling process, a dense upsampling convolution and a residual convolutional structure are proposed. We tested our method on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge and achieved competitive results compared with other state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xueying Chen (3 papers)
  2. Rong Zhang (133 papers)
  3. Pingkun Yan (55 papers)
Citations (61)