Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally conservative finite difference schemes for the modified KdV equation (1903.11491v2)

Published 27 Mar 2019 in math.NA and cs.NA

Abstract: Finite difference schemes that preserve two conservation laws of a given partial differential equation can be found directly by a recently-developed symbolic approach. Until now, this has been used only for equations with quadratic nonlinearity. In principle, a simplified version of the direct approach also works for equations with polynomial nonlinearity of higher degree. For the modified Korteweg-de Vries equation, whose nonlinear term is cubic, this approach yields several new families of second-order accurate schemes that preserve mass and either energy or momentum. Two of these families contain Average Vector Field schemes of the type developed by Quispel and coworkers. Numerical tests show that each family includes schemes that are highly accurate compared to other mass-preserving methods that can be found in the literature.

Citations (13)

Summary

We haven't generated a summary for this paper yet.