2000 character limit reached
A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problems (1903.11460v3)
Published 27 Mar 2019 in math.OC, cs.LG, cs.NA, math.NA, stat.CO, and stat.ML
Abstract: In this paper, we consider high-dimensional nonconvex square-root-loss regression problems and introduce a proximal majorization-minimization (PMM) algorithm for these problems. Our key idea for making the proposed PMM to be efficient is to develop a sparse semismooth Newton method to solve the corresponding subproblems. By using the Kurdyka-{\L}ojasiewicz property exhibited in the underlining problems, we prove that the PMM algorithm converges to a d-stationary point. We also analyze the oracle property of the initial subproblem used in our algorithm. Extensive numerical experiments are presented to demonstrate the high efficiency of the proposed PMM algorithm.