Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary LCD Codes from $\mathbb{Z}_2\mathbb{Z}_2[u]$ (1903.11380v1)

Published 26 Mar 2019 in cs.IT and math.IT

Abstract: Linear complementary dual (LCD) codes over finite fields are linear codes satisfying $C\cap C{\perp}={0}$. We generalize the LCD codes over finite fields to $\mathbb{Z}_2\mathbb{Z}_2[u]$-LCD codes over the ring $\mathbf{Z}_2\times(\mathbf{Z}_2+u\mathbf{Z}_2)$. Under suitable conditions, $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear codes that are $\mathbb{Z}_2\mathbb{Z}_2[u]$-LCD codes are characterized. We then prove that the binary image of a $\mathbb{Z}_2\mathbb{Z}_2[u]$-LCD code is a binary LCD code. Finally, by means of these conditions, we construct new binary LCD codes using $\mathbb{Z}_2\mathbb{Z}_2[u]$-LCD codes, most of which have better parameters than current binary LCD codes available.

Citations (1)

Summary

We haven't generated a summary for this paper yet.