Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metrics and compactifications of Teichmüller spaces of flat tori (1903.10655v1)

Published 26 Mar 2019 in math.DG and math.CV

Abstract: Using the identification of the symmetric space $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ with the Teichm\"uller space of flat $n$-tori of unit volume, we explore several metrics and compactifications of these spaces, drawing inspiration both from Teichm\"uller theory and symmetric spaces. We define and study analogs of the Thurston, Teichm\"uller, and Weil-Petersson metrics. We show the Teichm\"uller metric is a symmetrization of the Thurston metric, which is a polyhedral Finsler metric, and the Weil-Petersson metric is the Riemannian metric of $\mathrm{SL}(n,\mathbb{R})/\mathrm{SO}(n)$ as a symmetric space. We also construct a Thurston-type compactification using measured foliations on $n$-tori, and show that the horofunction compactification with respect to the Thurston metric is isomorphic to it, as well as to a minimal Satake compactification.

Summary

We haven't generated a summary for this paper yet.