Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjoint characteristic decomposition of one-dimensional waves (1903.10607v2)

Published 25 Mar 2019 in physics.comp-ph and physics.flu-dyn

Abstract: Adjoint methods enable the accurate calculation of the sensitivities of a quantity of interest. The sensitivity is obtained by solving the adjoint system, which can be derived by continuous or discrete adjoint strategies. In acoustic wave propagation, continuous and discrete adjoint methods have been developed to compute the eigenvalue sensitivity to design parameters and passive devices (Aguilar, J. G. et al, 2017, J. Computational Physics, vol. 341, 163-181). In this short communication, it is shown that the continuous and discrete adjoint characteristic decompositions, and Riemann invariants, are connected by a similarity transformation. The results are shown in the Laplace domain. The adjoint characteristic decomposition is applied to a one-dimensional acoustic resonator, which contains a monopole source of sound. The proposed framework provides the foundation to tackle larger acoustic networks with a discrete adjoint approach, opening up new possibilities for adjoint-based design of problems that can be solved by the method of characteristics.

Summary

We haven't generated a summary for this paper yet.