Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The functional role of cue-driven feature-based feedback in object recognition (1903.10446v1)

Published 25 Mar 2019 in q-bio.NC, cs.CV, and cs.LG

Abstract: Visual object recognition is not a trivial task, especially when the objects are degraded or surrounded by clutter or presented briefly. External cues (such as verbal cues or visual context) can boost recognition performance in such conditions. In this work, we build an artificial neural network to model the interaction between the object processing stream (OPS) and the cue. We study the effects of varying neural and representational capacities of the OPS on the performance boost provided by cue-driven feature-based feedback in the OPS. We observe that the feedback provides performance boosts only if the category-specific features about the objects cannot be fully represented in the OPS. This representational limit is more dependent on task demands than neural capacity. We also observe that the feedback scheme trained to maximise recognition performance boost is not the same as tuning-based feedback, and actually performs better than tuning-based feedback.

Citations (4)

Summary

We haven't generated a summary for this paper yet.