Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+ (1903.10269v3)

Published 25 Mar 2019 in cs.DB

Abstract: To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly used. However, as they produce huge amounts of data, only simple aggregates are stored. This removes outliers and fluctuations that could indicate problems. As a remedy, we present a model-based approach for managing time series with dimensions that exploits correlation in and among time series. Specifically, we propose compressing groups of correlated time series using an extensible set of model types within a user-defined error bound (possibly zero). We name this new category of model-based compression methods for time series Multi-Model Group Compression (MMGC). We present the first MMGC method GOLEMM and extend model types to compress time series groups. We propose primitives for users to effectively define groups for differently sized data sets, and based on these, an automated grouping method using only the time series dimensions. We propose algorithms for executing simple and multi-dimensional aggregate queries on models. Last, we implement our methods in the Time Series Management System (TSMS) ModelarDB (ModelarDB+). Our evaluation shows that compared to widely used formats, ModelarDB+ provides up to 13.7 times faster ingestion due to high compression, 113 times better compression due to the adaptivity of GOLEMM, 630 times faster aggregates by using models, and close to linear scalability. It is also extensible and supports online query processing.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.