Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction of a homogeneous polynomial from its additive decompositions when identifiability fails (1903.10188v1)

Published 25 Mar 2019 in math.AG

Abstract: Let $X\subset \mathbb {P}r$ be an integral and non-degenerate variety. For any $q\in \mathbb {P}r$ let $r_X(q)$ be its $X$-rank and $\mathcal {S} (X,q)$ the set of all finite subsets of $X$ such that $|S|=r_X(q)$ and $q\in \langle S\rangle$, where $\langle \ \ \rangle$ denotes the linear span. We consider the case $|\mathcal {S} (X,q)|>1$ (i.e. when $q$ is not $X$-identifiable) and study the set $W(X)_q:= \cap _{S\in\mathcal {S}}\langle S\rangle$, which we call the non-uniqueness set of $q$. We study the case $\dim X=1$ and the case $X$ a Veronese embedding of $\mathbb {P}n$.

Summary

We haven't generated a summary for this paper yet.