Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Characterization of Morphic Words with Polynomial Growth (1903.09905v4)

Published 24 Mar 2019 in cs.FL

Abstract: A morphic word is obtained by iterating a morphism to generate an infinite word, and then applying a coding. We characterize morphic words with polynomial growth in terms of a new type of infinite word called a $\textit{zigzag word}$. A zigzag word is represented by an initial string, followed by a finite list of terms, each of which repeats for each $n \geq 1$ in one of three ways: it grows forward [$t(1)\ t(2)\ \dotsm\ t(n)]$, backward [$t(n)\ \dotsm\ t(2)\ t(1)$], or just occurs once [$t$]. Each term can recursively contain subterms with their own forward and backward repetitions. We show that an infinite word is morphic with growth $\Theta(nk)$ iff it is a zigzag word of depth $k$. As corollaries, we obtain that the morphic words with growth $O(n)$ are exactly the ultimately periodic words, and the morphic words with growth $O(n2)$ are exactly the multilinear words.

Citations (1)

Summary

We haven't generated a summary for this paper yet.