Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Understanding for Autonomous Manipulation with Deep Learning (1903.09761v1)

Published 23 Mar 2019 in cs.CV and cs.RO

Abstract: Over the past few years, deep learning techniques have achieved tremendous success in many visual understanding tasks such as object detection, image segmentation, and caption generation. Despite this thriving in computer vision and natural language processing, deep learning has not yet shown significant impact in robotics. Due to the gap between theory and application, there are many challenges when applying the results of deep learning to the real robotic systems. In this study, our long-term goal is to bridge the gap between computer vision and robotics by developing visual methods that can be used in real robots. In particular, this work tackles two fundamental visual problems for autonomous robotic manipulation: affordance detection and fine-grained action understanding. Theoretically, we propose different deep architectures to further improves the state of the art in each problem. Empirically, we show that the outcomes of our proposed methods can be applied in real robots and allow them to perform useful manipulation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Anh Nguyen (158 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.