Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

heSRPT: Optimal Parallel Scheduling of Jobs With Known Sizes (1903.09346v2)

Published 22 Mar 2019 in cs.PF

Abstract: When parallelizing a set of jobs across many servers, one must balance a trade-off between granting priority to short jobs and maintaining the overall efficiency of the system. When the goal is to minimize the mean flow time of a set of jobs, it is usually the case that one wants to complete short jobs before long jobs. However, since jobs usually cannot be parallelized with perfect efficiency, granting strict priority to the short jobs can result in very low system efficiency which in turn hurts the mean flow time across jobs. In this paper, we derive the optimal policy for allocating servers to jobs at every moment in time in order to minimize mean flow time across jobs. We assume that jobs follow a sublinear, concave speedup function, and hence jobs experience diminishing returns from being allocated additional servers. We show that the optimal policy, heSRPT, will complete jobs according to their size order, but maintains overall system efficiency by allocating some servers to each job at every moment in time. We compare heSRPT with state-of-the-art allocation policies from the literature and show that heSRPT outperforms its competitors by at least 30%, and often by much more.

Citations (1)

Summary

We haven't generated a summary for this paper yet.