Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Norms of composition operators on the $H^2$ space of Dirichlet series (1903.08886v2)

Published 21 Mar 2019 in math.FA

Abstract: We consider composition operators $\mathscr{C}_\varphi$ on the Hardy space of Dirichlet series $\mathscr{H}2$, generated by Dirichlet series symbols $\varphi$. We prove two different subordination principles for such operators. One concerns affine symbols only, and is based on an arithmetical condition on the coefficients of $\varphi$. The other concerns general symbols, and is based on a geometrical condition on the boundary values of $\varphi$. Both principles are strict, in the sense that they characterize the composition operators of maximal norm generated by symbols having given mapping properties. In particular, we generalize a result of J. H. Shapiro on the norm of composition operators on the classical Hardy space of the unit disc. Based on our techniques, we also improve the recently established upper and lower norm bounds in the special case that $\varphi(s) = c + r2{-s}$. A number of other examples are given.

Summary

We haven't generated a summary for this paper yet.