Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affordance Learning In Direct Perception for Autonomous Driving (1903.08746v1)

Published 20 Mar 2019 in cs.CV and cs.IR

Abstract: Recent development in autonomous driving involves high-level computer vision and detailed road scene understanding. Today, most autonomous vehicles are using mediated perception approach for path planning and control, which highly rely on high-definition 3D maps and real time sensors. Recent research efforts aim to substitute the massive HD maps with coarse road attributes. In this paper, we follow the direct perception based method to train a deep neural network for affordance learning in autonomous driving. Our goal in this work is to develop the affordance learning model based on freely available Google Street View panoramas and Open Street Map road vector attributes. Driving scene understanding can be achieved by learning affordances from the images captured by car-mounted cameras. Such scene understanding by learning affordances may be useful for corroborating base maps such as HD maps so that the required data storage space is minimized and available for processing in real time. We compare capability in road attribute identification between human volunteers and our model by experimental evaluation. Our results indicate that this method could act as a cheaper way for training data collection in autonomous driving. The cross validation results also indicate the effectiveness of our model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chen Sun (187 papers)
  2. Jean M. Uwabeza Vianney (1 paper)
  3. Dongpu Cao (26 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.