Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The importance of better models in stochastic optimization (1903.08619v1)

Published 20 Mar 2019 in math.OC and stat.ML

Abstract: Standard stochastic optimization methods are brittle, sensitive to stepsize choices and other algorithmic parameters, and they exhibit instability outside of well-behaved families of objectives. To address these challenges, we investigate models for stochastic minimization and learning problems that exhibit better robustness to problem families and algorithmic parameters. With appropriately accurate models---which we call the aProx family---stochastic methods can be made stable, provably convergent and asymptotically optimal; even modeling that the objective is nonnegative is sufficient for this stability. We extend these results beyond convexity to weakly convex objectives, which include compositions of convex losses with smooth functions common in modern machine learning applications. We highlight the importance of robustness and accurate modeling with a careful experimental evaluation of convergence time and algorithm sensitivity.

Citations (70)

Summary

We haven't generated a summary for this paper yet.