Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenfunction concentration via geodesic beams (1903.08461v3)

Published 20 Mar 2019 in math.AP, math-ph, math.MP, and math.SP

Abstract: In this article we develop new techniques for studying concentration of Laplace eigenfunctions $\phi_\lambda$ as their frequency, $\lambda$, grows. The method consists of controlling $\phi_\lambda(x)$ by decomposing $\phi_\lambda$ into a superposition of geodesic beams that run through the point $x$. Each beam is localized in phase-space on a tube centered around a geodesic whose radius shrinks slightly slower than $\lambda{-\frac{1}{2}}$. We control $\phi_\lambda(x)$ by the $L2$-mass of $\phi_\lambda$ on each geodesic tube and derive a purely dynamical statement through which $\phi_\lambda(x)$ can be studied. In particular, we obtain estimates on $\phi_\lambda(x)$ by decomposing the set of geodesic tubes into those that are non self-looping for time $T$ and those that are. This approach allows for quantitative improvements, in terms of $T$, on the available bounds for $L\infty$ norms, $Lp$ norms, pointwise Weyl laws, and averages over submanifolds.

Summary

We haven't generated a summary for this paper yet.