Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Non-linear State Space Copula Model to Predict Air Pollution in Beijing (1903.08421v2)

Published 20 Mar 2019 in stat.AP

Abstract: Air pollution is a serious issue that currently affects many industrial cities in the world and can cause severe illness to the population. In particular, it has been proven that extreme high levels of airborne contaminants have dangerous short-term effects on human health, in terms of increased hospital admissions for cardiovascular and respiratory diseases and increased mortality risk. For these reasons, accurate estimation and prediction of airborne pollutant concentration is crucial. In this paper, we propose a flexible novel approach to model hourly measurements of fine particulate matter and meteorological data collected in Beijing in 2014. We show that the standard state space model, based on Gaussian assumptions, does not correctly capture the time dynamics of the observations. Therefore, we propose a non-linear non-Gaussian state space model where both the observation and the state equations are defined by copula specifications, and we perform Bayesian inference using the Hamiltonian Monte Carlo method. The proposed copula state space approach is very flexible, since it allows us to separately model the marginals and to accommodate a wide variety of dependence structures in the data dynamics. We show that the proposed approach allows us not only to predict particulate matter measurements, but also to investigate the effects of user specified climate scenarios.

Summary

We haven't generated a summary for this paper yet.