Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action Principle and Dynamic Ensemble Theory for Non-equilibrium Markov Chains (1903.07848v1)

Published 19 Mar 2019 in cond-mat.stat-mech

Abstract: An overarching action principle, the principle of minimal free action, exists for ergodic Markov chain dynamics. Using this principle and the Detailed Fluctuation Theorem, we construct a dynamic ensemble theory for non-equilibrium steady states (NESS) of Markov chains, which is in full analogy with equilibrium canonical ensemble theory. Concepts such as energy, free energy, Boltzmann macro-sates, entropy, and thermodynamic limit all have their dynamic counterparts. For reversible Markov chains, minimization of Boltzmann free action yields thermal equilibrium states, and hence provide a dynamic justification of the principle of minimal free energy. For irreversible Markov chains, minimization of Boltzmann free action selects the stable NESS, and determines its macroscopic properties, including entropy production. A quadratic approximation of free action leads to linear-response theory with reciprocal relations built-in. Hence, in so much as non-equilibrium phenomena can be modeled as Markov processes, minimal free action serves as a basic principle for both equilibrium and non-equilibrium statistical physics.

Summary

We haven't generated a summary for this paper yet.