Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrodinger system (1903.07175v1)

Published 17 Mar 2019 in math.AP

Abstract: We consider a system of coupled cubic Schr\"odinger equations in one space dimension \begin{equation*} \begin{cases} i \partial_t u + \partial_x2 u +(|u|2 + \omega |v|2) u =0\ i \partial_t v + \partial_x2 v+ (|v|2 + \omega |u|2) v=0 \end{cases}\quad (t,x)\in {\bf R}\times{\bf R}, \end{equation*} in the non-integrable case $0 < \omega < 1$. First, we justify the existence of a symmetric 2-solitary wave with logarithmic distance, more precisely a solution of the system satisfying [ \lim_{t\to +\infty}\left| \begin{pmatrix} u(t) \ v(t)\end{pmatrix} - \begin{pmatrix} e{it}Q (\cdot - \frac{1}{2} \log (\Omega t) - \frac{1}{4} \log \log t) \ e{it}Q (\cdot + \frac{1}{2} \log (\Omega t) + \frac{1}{4} \log \log t)\end{pmatrix}\right|{H1\times H1} = 0] where $Q = \sqrt{2}{\rm sech}$ is the explicit solution of $ Q'' - Q + Q3 = 0$ and $\Omega>0$ is a constant. This result extends to the non-integrable case the existence of symmetric 2-solitons with logarithmic distance known in the integrable case $\omega=0$ and $\omega=1$. Such strongly interacting symmetric $2$-solitary waves were also previously constructed for the non-integrable scalar nonlinear Schr\"odinger equation in any space dimension and for any energy-subcritical power nonlinearity. Second, under the conditions $0<c<1$ and $0<\omega < \frac 12 c(c+1)$, we construct solutions of the system satisfying [ \lim{t\to +\infty}\left| \begin{pmatrix}u(t) \ v(t)\end{pmatrix} - \begin{pmatrix}e{i c2 t}Q_c (\cdot - \frac{1}{(c+1)c} \log (\Omega_c t) ) \ e{i t} Q (\cdot + \frac{1}{c+1} \log (\Omega_c t))\end{pmatrix} \right|_{H1\times H1}=0] where $Q_c(x)=cQ(cx)$ and $\Omega_c>0$ is a constant. Such logarithmic regime with non-symmetric solitons does not exist in the integrable cases $\omega=0$ and $\omega=1$ and is still unknown in the non-integrable scalar case.

Summary

We haven't generated a summary for this paper yet.