Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of the Shannon-Stam inequality via the Föllmer process (1903.07140v1)

Published 17 Mar 2019 in cs.IT, math.FA, math.IT, and math.PR

Abstract: We prove stability estimates for the Shannon-Stam inequality (also known as the entropy-power inequality) for log-concave random vectors in terms of entropy and transportation distance. In particular, we give the first stability estimate for general log-concave random vectors in the following form: for log-concave random vectors $X,Y \in \mathbb{R}d$, the deficit in the Shannon-Stam inequality is bounded from below by the expression $$ C \left(\mathrm{D}\left(X||G\right) + \mathrm{D}\left(Y||G\right)\right), $$ where $\mathrm{D}\left( \cdot ~ ||G\right)$ denotes the relative entropy with respect to the standard Gaussian and the constant $C$ depends only on the covariance structures and the spectral gaps of $X$ and $Y$. In the case of uniformly log-concave vectors our analysis gives dimension-free bounds. Our proofs are based on a new approach which uses an entropy-minimizing process from stochastic control theory.

Citations (9)

Summary

We haven't generated a summary for this paper yet.