Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dying ReLU and Initialization: Theory and Numerical Examples (1903.06733v3)

Published 15 Mar 2019 in stat.ML, cs.LG, and math.PR

Abstract: The dying ReLU refers to the problem when ReLU neurons become inactive and only output 0 for any input. There are many empirical and heuristic explanations of why ReLU neurons die. However, little is known about its theoretical analysis. In this paper, we rigorously prove that a deep ReLU network will eventually die in probability as the depth goes to infinite. Several methods have been proposed to alleviate the dying ReLU. Perhaps, one of the simplest treatments is to modify the initialization procedure. One common way of initializing weights and biases uses symmetric probability distributions, which suffers from the dying ReLU. We thus propose a new initialization procedure, namely, a randomized asymmetric initialization. We prove that the new initialization can effectively prevent the dying ReLU. All parameters required for the new initialization are theoretically designed. Numerical examples are provided to demonstrate the effectiveness of the new initialization procedure.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com