Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo wavelets: a randomized approach to frame discretization (1903.06594v2)

Published 15 Mar 2019 in math.FA and stat.ML

Abstract: In this paper we propose and study a family of continuous wavelets on general domains, and a corresponding stochastic discretization that we call Monte Carlo wavelets. First, using tools from the theory of reproducing kernel Hilbert spaces and associated integral operators, we define a family of continuous wavelets by spectral calculus. Then, we propose a stochastic discretization based on Monte Carlo estimates of integral operators. Using concentration of measure results, we establish the convergence of such a discretization and derive convergence rates under natural regularity assumptions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.