Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Role of Bloom Filter in Big Data Research: A Survey (1903.06565v1)

Published 15 Mar 2019 in cs.DB

Abstract: Big Data is the most popular emerging trends that becomes a blessing for human kinds and it is the necessity of day-to-day life. For example, Facebook. Every person involves with producing data either directly or indirectly. Thus, Big Data is a high volume of data with exponential growth rate that consists of a variety of data. Big Data touches all fields, including Government sector, IT industry, Business, Economy, Engineering, Bioinformatics, and other basic sciences. Thus, Big Data forms a data silo. Most of the data are duplicates and unstructured. To deal with such kind of data silo, Bloom Filter is a precious resource to filter out the duplicate data. Also, Bloom Filter is inevitable in a Big Data storage system to optimize the memory consumption. Undoubtedly, Bloom Filter uses a tiny amount of memory space to filter a very large data size and it stores information of a large set of data. However, functionality of the Bloom Filter is limited to membership filter, but it can be adapted in various applications. Besides, the Bloom Filter is deployed in diverse field, and also used in the interdisciplinary research area. Bioinformatics, for instance. In this article, we expose the usefulness of Bloom Filter in Big Data research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ripon Patgiri (21 papers)
  2. Sabuzima Nayak (16 papers)
  3. Samir Kumar Borgohain (7 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.