Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Data Science to Understand the Film Industry's Gender Gap (1903.06469v3)

Published 15 Mar 2019 in cs.SI, cs.CY, and physics.data-an

Abstract: Data science can offer answers to a wide range of social science questions. Here we turn attention to the portrayal of women in movies, an industry that has a significant influence on society, impacting such aspects of life as self-esteem and career choice. To this end, we fused data from the online movie database IMDb with a dataset of movie dialogue subtitles to create the largest available corpus of movie social networks (15,540 networks). Analyzing this data, we investigated gender bias in on-screen female characters over the past century. We find a trend of improvement in all aspects of women`s roles in movies, including a constant rise in the centrality of female characters. There has also been an increase in the number of movies that pass the well-known Bechdel test, a popular--albeit flawed--measure of women in fiction. Here we propose a new and better alternative to this test for evaluating female roles in movies. Our study introduces fresh data, an open-code framework, and novel techniques that present new opportunities in the research and analysis of movies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dima Kagan (13 papers)
  2. Thomas Chesney (4 papers)
  3. Michael Fire (37 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.