Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deformed SPDE models with an application to spatial modeling of significant wave height (1903.06296v2)

Published 14 Mar 2019 in stat.AP

Abstract: A non-stationary Gaussian random field model is developed based on a combination of the stochastic partial differential equation (SPDE) approach and the classical deformation method. With the deformation method, a stationary field is defined on a domain which is deformed so that the field becomes non-stationary. We show that if the stationary field is a Mat'ern field defined as a solution to a fractional SPDE, the resulting non-stationary model can be represented as the solution to another fractional SPDE on the deformed domain. By defining the model in this way, the computational advantages of the SPDE approach can be combined with the deformation method's more intuitive parameterisation of non-stationarity. In particular it allows for independent control over the non-stationary practical correlation range and the variance, which has not been possible with previously proposed non-stationary SPDE models. The model is tested on spatial data of significant wave height, a characteristic of ocean surface conditions which is important when estimating the wear and risks associated with a planned journey of a ship. The model parameters are estimated to data from the north Atlantic using a maximum likelihood approach. The fitted model is used to compute wave height exceedance probabilities and the distribution of accumulated fatigue damage for ships traveling a popular shipping route. The model results agree well with the data, indicating that the model could be used for route optimization in naval logistics.

Summary

We haven't generated a summary for this paper yet.