Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Episodic Memory Reader: Learning What to Remember for Question Answering from Streaming Data (1903.06164v3)

Published 14 Mar 2019 in cs.LG, cs.CL, and stat.ML

Abstract: We consider a novel question answering (QA) task where the machine needs to read from large streaming data (long documents or videos) without knowing when the questions will be given, which is difficult to solve with existing QA methods due to their lack of scalability. To tackle this problem, we propose a novel end-to-end deep network model for reading comprehension, which we refer to as Episodic Memory Reader (EMR) that sequentially reads the input contexts into an external memory, while replacing memories that are less important for answering \emph{unseen} questions. Specifically, we train an RL agent to replace a memory entry when the memory is full, in order to maximize its QA accuracy at a future timepoint, while encoding the external memory using either the GRU or the Transformer architecture to learn representations that considers relative importance between the memory entries. We validate our model on a synthetic dataset (bAbI) as well as real-world large-scale textual QA (TriviaQA) and video QA (TVQA) datasets, on which it achieves significant improvements over rule-based memory scheduling policies or an RL-based baseline that independently learns the query-specific importance of each memory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Moonsu Han (3 papers)
  2. Minki Kang (21 papers)
  3. Hyunwoo Jung (3 papers)
  4. Sung Ju Hwang (178 papers)
Citations (17)