Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Functional (Monadic) Second-Order Theory of Infinite Trees (1903.05878v3)

Published 14 Mar 2019 in cs.LO

Abstract: This paper presents a complete axiomatization of Monadic Second-Order Logic (MSO) over infinite trees. MSO on infinite trees is a rich system, and its decidability ("Rabin's Tree Theorem") is one of the most powerful known results concerning the decidability of logics. By a complete axiomatization we mean a complete deduction system with a polynomial-time recognizable set of axioms. By naive enumeration of formal derivations, this formally gives a proof of Rabin's Tree Theorem. The deduction system consists of the usual rules for second-order logic seen as two-sorted first-order logic, together with the natural adaptation In addition, it contains an axiom scheme expressing the (positional) determinacy of certain parity games. The main difficulty resides in the limited expressive power of the language of MSO. We actually devise an extension of MSO, called Functional (Monadic) Second-Order Logic (FSO), which allows us to uniformly manipulate (hereditarily) finite sets and corresponding labeled trees, and whose language allows for higher abstraction than that of MSO.

Summary

We haven't generated a summary for this paper yet.