Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the relaxation of integral functionals depending on the symmetrized gradient (1903.05771v3)

Published 14 Mar 2019 in math.AP and math.FA

Abstract: We prove results on the relaxation and weak* lower semicontinuity of integral functionals of the form [ \mathcal{F}[u] := \int_{\Omega} f \bigg( \frac{1}{2} \bigl( \nabla u(x) + \nabla u(x)T \bigr) \bigg)\,\mathrm{d} x, \qquad u : \Omega \subset \mathbb{R}d \to \mathbb{R}d, ] over the space $\mathrm{BD}(\Omega)$ of functions of bounded deformation or over the Temam-Strang space [ \mathrm{U}(\Omega):=\bigl{u\in \mathrm{BD}(\Omega): \ \mathrm{div} \ u\in \mathrm{L}2(\Omega)\bigr}, ] depending on the growth and shape of the integrand $f$. Such functionals are interesting for example in the study of Hencky plasticity and related models.

Summary

We haven't generated a summary for this paper yet.