Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperspectral Data Augmentation (1903.05580v1)

Published 13 Mar 2019 in cs.CV

Abstract: Data augmentation is a popular technique which helps improve generalization capabilities of deep neural networks. It plays a pivotal role in remote-sensing scenarios in which the amount of high-quality ground truth data is limited, and acquiring new examples is costly or impossible. This is a common problem in hyperspectral imaging, where manual annotation of image data is difficult, expensive, and prone to human bias. In this letter, we propose online data augmentation of hyperspectral data which is executed during the inference rather than before the training of deep networks. This is in contrast to all other state-of-the-art hyperspectral augmentation algorithms which increase the size (and representativeness) of training sets. Additionally, we introduce a new principal component analysis based augmentation. The experiments revealed that our data augmentation algorithms improve generalization of deep networks, work in real-time, and the online approach can be effectively combined with offline techniques to enhance the classification accuracy.

Citations (20)

Summary

We haven't generated a summary for this paper yet.