Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective reinforcement learning based local search for the maximum k-plex problem (1903.05537v1)

Published 13 Mar 2019 in cs.NE and cs.LG

Abstract: The maximum k-plex problem is a computationally complex problem, which emerged from graph-theoretic social network studies. This paper presents an effective hybrid local search for solving the maximum k-plex problem that combines the recently proposed breakout local search algorithm with a reinforcement learning strategy. The proposed approach includes distinguishing features such as: a unified neighborhood search based on the swapping operator, a distance-and-quality reward for actions and a new parameter control mechanism based on reinforcement learning. Extensive experiments for the maximum k-plex problem (k = 2, 3, 4, 5) on 80 benchmark instances from the second DIMACS Challenge demonstrate that the proposed approach can match the best-known results from the literature in all but four problem instances. In addition, the proposed algorithm is able to find 32 new best solutions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.