Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource Abstraction for Reinforcement Learning in Multiagent Congestion Problems (1903.05431v1)

Published 13 Mar 2019 in cs.MA and cs.LG

Abstract: Real-world congestion problems (e.g. traffic congestion) are typically very complex and large-scale. Multiagent reinforcement learning (MARL) is a promising candidate for dealing with this emerging complexity by providing an autonomous and distributed solution to these problems. However, there are three limiting factors that affect the deployability of MARL approaches to congestion problems. These are learning time, scalability and decentralised coordination i.e. no communication between the learning agents. In this paper we introduce Resource Abstraction, an approach that addresses these challenges by allocating the available resources into abstract groups. This abstraction creates new reward functions that provide a more informative signal to the learning agents and aid the coordination amongst them. Experimental work is conducted on two benchmark domains from the literature, an abstract congestion problem and a realistic traffic congestion problem. The current state-of-the-art for solving multiagent congestion problems is a form of reward shaping called difference rewards. We show that the system using Resource Abstraction significantly improves the learning speed and scalability, and achieves the highest possible or near-highest joint performance/social welfare for both congestion problems in large-scale scenarios involving up to 1000 reinforcement learning agents.

Citations (28)

Summary

We haven't generated a summary for this paper yet.