Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The colored Jones polynomial and Kontsevich-Zagier series for double twist knots, II (1903.05060v2)

Published 12 Mar 2019 in math.GT, math.CO, math.NT, and math.QA

Abstract: Let $K_{(m,p)}$ denote the family of double twist knots where $2m-1$ and $2p$ are non-zero integers denoting the number of half-twists in each region. Using a result of Takata, we prove a formula for the colored Jones polynomial of $K_{(-m,-p)}$ and $K_{(-m,p)}$. The latter case leads to new families of $q$-hypergeometric series generalizing the Kontsevich-Zagier series. We also use Bailey pairs and formulas of Walsh to find cyclotomic-like expansions for the colored Jones polynomials of $K_{(m,p)}$ and $K_{(m,-p)}$.

Summary

We haven't generated a summary for this paper yet.