Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Maximum Weight Independent Set Problem in graphs without induced cycles of length at least five (1903.04761v2)

Published 12 Mar 2019 in cs.DM, cs.DS, and math.CO

Abstract: A hole in a graph is an induced cycle of length at least $4$, and an antihole is the complement of an induced cycle of length at least $4$. A hole or antihole is long if its length is at least $5$. For an integer $k$, the $k$-prism is the graph consisting of two cliques of size $k$ joined by a matching. The complexity of Maximum (Weight) Independent Set (MWIS) in long-hole-free graphs remains an important open problem. In this paper we give a polynomial time algorithm to solve MWIS in long-hole-free graphs with no $k$-prism (for any fixed integer $k$), and a subexponential algorithm for MWIS in long-hole-free graphs in general. As a special case this gives a polynomial time algorithm to find a maximum weight clique in perfect graphs with no long antihole, and no hole of length $6$. The algorithms use the framework of minimal chordal completions and potential maximal cliques.

Citations (21)

Summary

We haven't generated a summary for this paper yet.