Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Mixup improves text recognition with CTC loss (1903.04246v1)

Published 11 Mar 2019 in cs.CV

Abstract: Modern handwritten text recognition techniques employ deep recurrent neural networks. The use of these techniques is especially efficient when a large amount of annotated data is available for parameter estimation. Data augmentation can be used to enhance the performance of the systems when data is scarce. Manifold Mixup is a modern method of data augmentation that meld two images or the feature maps corresponding to these images and the targets are fused accordingly. We propose to apply the Manifold Mixup to text recognition while adapting it to work with a Connectionist Temporal Classification cost. We show that Manifold Mixup improves text recognition results on various languages and datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.