Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Randomized Gradient-Free Mirror Descent Algorithm for Constrained Optimization (1903.04157v1)

Published 11 Mar 2019 in math.OC

Abstract: This paper is concerned with multi-agent optimization problem. A distributed randomized gradient-free mirror descent (DRGFMD) method is developed by introducing a randomized gradient-free oracle in the mirror descent scheme where the non-Euclidean Bregman divergence is used. The classical gradient descent method is generalized without using subgradient information of objective functions. The proposed algorithm is the first distributed non-Euclidean zeroth-order method which achieves an $O(1/\sqrt{T})$ convergence rate, recovering the best known optimal rate of distributed compact constrained convex optimization. Also, the DRGFMD algorithm achieves an $O(\ln T/T)$ convergence rate for the strongly convex constrained optimization case. The rate matches the best known non-compact constraint result. Moreover, a decentralized reciprocal weighted average approximating sequence is investigated and first used in distributed algorithm. A class of convergence rates are also achieved for the algorithm with weighted averaging (DRGFMD-WA). The technique on constructing the decentralized weighted average sequence provides new insight in searching for minimizers in distributed algorithms.

Summary

We haven't generated a summary for this paper yet.