Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Collusion-Free Teaching (1903.04012v1)

Published 10 Mar 2019 in cs.LG and stat.ML

Abstract: Formal models of learning from teachers need to respect certain criteria to avoid collusion. The most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias (1996), and various teaching models obeying their criterion have been studied. For each model $M$ and each concept class $\mathcal{C}$, a parameter $M$-$\mathrm{TD}(\mathcal{C})$ refers to the teaching dimension of concept class $\mathcal{C}$ in model $M$---defined to be the number of examples required for teaching a concept, in the worst case over all concepts in $\mathcal{C}$. This paper introduces a new model of teaching, called no-clash teaching, together with the corresponding parameter $\mathrm{NCTD}(\mathcal{C})$. No-clash teaching is provably optimal in the strong sense that, given any concept class $\mathcal{C}$ and any model $M$ obeying Goldman and Mathias's collusion-freeness criterion, one obtains $\mathrm{NCTD}(\mathcal{C})\le M$-$\mathrm{TD}(\mathcal{C})$. We also study a corresponding notion $\mathrm{NCTD}+$ for the case of learning from positive data only, establish useful bounds on $\mathrm{NCTD}$ and $\mathrm{NCTD}+$, and discuss relations of these parameters to the VC-dimension and to sample compression. In addition to formulating an optimal model of collusion-free teaching, our main results are on the computational complexity of deciding whether $\mathrm{NCTD}+(\mathcal{C})=k$ (or $\mathrm{NCTD}(\mathcal{C})=k$) for given $\mathcal{C}$ and $k$. We show some such decision problems to be equivalent to the existence question for certain constrained matchings in bipartite graphs. Our NP-hardness results for the latter are of independent interest in the study of constrained graph matchings.

Citations (16)

Summary

We haven't generated a summary for this paper yet.