Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Triangular Matrix Categories I: Dualizing Varieties and generalized one-point extension (1903.03914v1)

Published 10 Mar 2019 in math.CT

Abstract: Following Mitchell's philosophy, in this paper we define the analogous of the triangular matrix algebra to the context of rings with several objects. Given two additive categories $\mathcal{U}$ and $\mathcal{T}$ and $M\in \mathsf{Mod}(\mathcal{U}\otimes \mathcal{T}{op})$ we construct the triangular matrix category $\mathbf{\Lambda}:=\left[\begin{smaLLMatrix} \mathcal{T} & 0 \ M & \mathcal{U} \end{smaLLMatrix}\right]$. First, we prove that there is an equivalence $\Big( \mathsf{Mod}(\mathcal{T}), \mathbb{G}\mathsf{Mod}(\mathcal{U})\Big) \simeq \mathrm{Mod}(\mathbf{\Lambda})$. One of our main results is that if $\mathcal{U}$ and $\mathcal{T}$ are dualizing $K$-varieties and $M\in \mathsf{Mod}(\mathcal{U}\otimes \mathcal{T}{op})$ satisfies certain conditions then $\mathbf{\Lambda}:=\left[\begin{smaLLMatrix} \mathcal{T} & 0 \ M & \mathcal{U} \end{smaLLMatrix}\right]$ is a dualizing variety (see theorem 6.10). In particular, $\mathrm{mod}(\mathbf{\Lambda})$ has Auslander-Reiten sequences. Finally, we apply the theory developed in this paper to quivers and give a generalization of the so called one-point extension algebra.

Summary

We haven't generated a summary for this paper yet.