Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Hop Walks Indicate PageRank Order (1903.03756v1)

Published 9 Mar 2019 in cs.LG and stat.ML

Abstract: This paper shows that pairwise PageRank orders emerge from two-hop walks. The main tool used here refers to a specially designed sign-mirror function and a parameter curve, whose low-order derivative information implies pairwise PageRank orders with high probability. We study the pairwise correct rate by placing the Google matrix $\textbf{G}$ in a probabilistic framework, where $\textbf{G}$ may be equipped with different random ensembles for model-generated or real-world networks with sparse, small-world, scale-free features, the proof of which is mixed by mathematical and numerical evidence. We believe that the underlying spectral distribution of aforementioned networks is responsible for the high pairwise correct rate. Moreover, the perspective of this paper naturally leads to an $O(1)$ algorithm for any single pairwise PageRank comparison if assuming both $\textbf{A}=\textbf{G}-\textbf{I}_n$, where $\textbf{I}_n$ denotes the identity matrix of order $n$, and $\textbf{A}2$ are ready on hand (e.g., constructed offline in an incremental manner), based on which it is easy to extract the top $k$ list in $O(kn)$, thus making it possible for PageRank algorithm to deal with super large-scale datasets in real time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.