Stable Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
Abstract: In this paper, we study the asymptotic behavior of a supercritical $(\xi,\psi)$-superprocess $(X_t){t\geq 0}$ whose underlying spatial motion $\xi$ is an Ornstein-Uhlenbeck process on $\mathbb Rd$ with generator $L = \frac{1}{2}\sigma2\Delta - b x \cdot \nabla$ where $\sigma, b >0$; and whose branching mechanism $\psi$ satisfies Grey's condition and some perturbation condition which guarantees that, when $z\to 0$, $\psi(z)=-\alpha z + \eta z{1+\beta} (1+o(1))$ with $\alpha > 0$, $\eta>0$ and $\beta\in (0, 1)$. Some law of large numbers and $(1+\beta)$-stable central limit theorems are established for $(X_t(f) ){t\geq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.