Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Definable Topological Dynamics of $SL_2(\mathbb{C}((t))$ (1903.03570v1)

Published 8 Mar 2019 in math.LO

Abstract: We initiate a study of definable topological dynamics for groups definable in metastable theories. Specifically, we consider the special linear group $G = SL_2$ with entries from $M = \mathbb{C}((t))$; the field of formal Laurent series with complex coefficients. We prove such a group is not definably amenable, find a suitable group decomposition, and describe the minimal flows of the additive and multiplicative groups of $\mathbb{C}((t))$. The main result is an explicit description of the minimal flow and Ellis Group of $(G(M),S_G(M))$ and we observe that this is not isomorphic to $G/G{00}$, answering a question as to whether metastability is a suitable weakening of a conjecture of Newelski.

Summary

We haven't generated a summary for this paper yet.