Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limited-Memory BFGS with Displacement Aggregation (1903.03471v3)

Published 8 Mar 2019 in math.OC

Abstract: A displacement aggregation strategy is proposed for the curvature pairs stored in a limited-memory BFGS (a.k.a. L-BFGS) method such that the resulting (inverse) Hessian approximations are equal to those that would be derived from a full-memory BFGS method. This means that, if a sufficiently large number of pairs are stored, then an optimization algorithm employing the limited-memory method can achieve the same theoretical convergence properties as when full-memory (inverse) Hessian approximations are stored and employed, such as a local superlinear rate of convergence under assumptions that are common for attaining such guarantees. To the best of our knowledge, this is the first work in which a local superlinear convergence rate guarantee is offered by a quasi-Newton scheme that does not either store all curvature pairs throughout the entire run of the optimization algorithm or store an explicit (inverse) Hessian approximation. Numerical results are presented to show that displacement aggregation within an adaptive L-BFGS scheme can lead to better performance than standard L-BFGS.

Summary

We haven't generated a summary for this paper yet.