Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introduction to White Noise, Hida-Malliavin Calculus and Applications (1903.02936v2)

Published 7 Mar 2019 in math.OC

Abstract: The purpose of these lectures is threefold: We first give a short survey of the Hida white noise calculus, and in this context we introduce the Hida-Malliavin derivative as a stochastic gradient with values in the Hida stochastic distribution space $(\mathcal{S}% )*$. We show that this Hida-Malliavin derivative defined on $L2(\mathcal{F}_T,P)$ is a natural extension of the classical Malliavin derivative defined on the subspace $\mathbb{D}_{1,2}$ of $L2(P)$. The Hida-Malliavin calculus allows us to prove new results under weaker assumptions than could be obtained by the classical theory. In particular, we prove the following: (i) A general integration by parts formula and duality theorem for Skorohod integrals, (ii) a generalised fundamental theorem of stochastic calculus, and (iii) a general Clark-Ocone theorem, valid for all $F \in L2(\mathcal{F}_T,P)$. As applications of the above theory we prove the following: A general representation theorem for backward stochastic differential equations with jumps, in terms of Hida-Malliavin derivatives; a general stochastic maximum principle for optimal control; backward stochastic Volterra integral equations; optimal control of stochastic Volterra integral equations and other stochastic systems.

Summary

We haven't generated a summary for this paper yet.