Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Langevin thermostat for robust configurational and kinetic sampling (1903.02674v1)

Published 7 Mar 2019 in cond-mat.stat-mech and physics.comp-ph

Abstract: We reformulate the algorithm of Gr{\o}nbech-Jensen and Farago (GJF) for Langevin dynamics simulations at constant temperature. The GJF algorithm has become increasingly popular in molecular dynamics simulations because it provides robust (i.e., insensitive to variations in the time step) and accurate configurational sampling of the phase space with larger time steps than other Langevin thermostats. In the original derivation [Mol. Phys. {\bf 111}, 983 (2013)], the algorithm was formulated as a velocity-Verlet type integrator with an in-site velocity variable. Here, we reformulate it as a leap frog scheme with a half-step velocity variable. In contrast to the original form, the reforumlated one also provides robust and accurate estimations of kinetic measures such as the average kinetic energy. We analytically prove that the newly presented algorithm gives the exact configurational and kinetic temperatures of a harmonic oscillator for any time step smaller than the Verlet stability limit, and use computer simulations to demonstrate the configurational and kinetic robustness of the algorithm in strongly non-linear systems. This property of the new formulation of the GJF thermostat makes it very attractive for implementation in computer simulations.

Summary

We haven't generated a summary for this paper yet.