Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection of high codimensional bifurcations in variational PDEs (1903.02659v2)

Published 6 Mar 2019 in math.NA and cs.NA

Abstract: We derive bifurcation test equations for A-series singularities of nonlinear functionals and, based on these equations, we propose a numerical method for detecting high codimensional bifurcations in parameter-dependent PDEs such as parameter-dependent semilinear Poisson equations. As an example, we consider a Bratu-type problem and show how high codimensional bifurcations such as the swallowtail bifurcation can be found numerically. In particular, our original contributions are (1) the use of the Infinite-dimensional Splitting Lemma, (2) the unified and simplified treatment of all A-series bifurcations, (3) the presentation in Banach spaces, i.e. our results apply both to the PDE and its (variational) discretization, (4) further simplifications for parameter-dependent semilinear Poisson equations (both continuous and discrete), and (5) the unified treatment of the continuous problem and its discretisation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.