Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Symmetries and Weinberg's Soft Photon Theorem in Mink$_{d+2}$ (1903.02608v3)

Published 6 Mar 2019 in hep-th and hep-ph

Abstract: We show that Weinberg's leading soft photon theorem in massless abelian gauge theories implies the existence of an infinite-dimensional large gauge symmetry which acts non-trivially on the null boundaries ${\mathscr I}\pm$ of $(d+2)$-dimensional Minkowski spacetime. These symmetries are parameterized by an arbitrary function $\varepsilon(x)$ of the $d$-dimensional celestial sphere living at ${\mathscr I}\pm$. This extends the previously established equivalence between Weinberg's leading soft theorem and asymptotic symmetries from four and higher even dimensions to \emph{all} higher dimensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. F. Bloch and A. Nordsieck, “Note on the Radiation Field of the electron,” Phys. Rev. 52 (1937) 54–59.
  2. A. Nordsieck, “The Low Frequency Radiation of a Scattered Electron,” Phys. Rev. 52 (1937) 59–62.
  3. F. E. Low, “Scattering of light of very low frequency by systems of spin 1/2,” Phys. Rev. 96 (1954) 1428–1432.
  4. M. Gell-Mann and M. L. Goldberger, “Scattering of low-energy photons by particles of spin 1/2,” Phys. Rev. 96 (1954) 1433–1438.
  5. F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions,” Phys. Rev. 110 (1958) 974–977.
  6. D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence phenomena and high-energy processes,” Annals Phys. 13 (1961) 379–452.
  7. S. Weinberg, “Infrared photons and gravitons,” Phys.Rev. 140 (1965) B516–B524.
  8. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 2005.
  9. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  10. T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
  11. A. Mohd, “A note on asymptotic symmetries and soft-photon theorem,” JHEP 02 (2015) 060, arXiv:1412.5365 [hep-th].
  12. T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].
  13. M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].
  14. D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” Adv. Theor. Math. Phys. 21 (2017) 1769–1785, arXiv:1506.02906 [hep-th].
  15. A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” Phys. Rev. Lett. 116 no. 3, (2016) 031602, arXiv:1509.00543 [hep-th].
  16. B. Gabai and A. Sever, “Large gauge symmetries and asymptotic states in QED,” JHEP 12 (2016) 095, arXiv:1607.08599 [hep-th].
  17. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
  18. M. Campiglia and A. Laddha, “New symmetries for the Gravitational S-matrix,” JHEP 04 (2015) 076, arXiv:1502.02318 [hep-th].
  19. M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft theorems for massive particles,” JHEP 12 (2015) 094, arXiv:1509.01406 [hep-th].
  20. T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories,” arXiv:1511.07429 [hep-th].
  21. F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” arXiv:1404.4091 [hep-th].
  22. B. U. W. Schwab, “Subleading Soft Factor for String Disk Amplitudes,” arXiv:1406.4172 [hep-th].
  23. C. Kalousios and F. Rojas, “Next to subleading soft-graviton theorem in arbitrary dimensions,” JHEP 01 (2015) 107, arXiv:1407.5982 [hep-th].
  24. H. Luo, P. Mastrolia, and W. J. Torres Bobadilla, “Subleading soft behavior of QCD amplitudes,” Phys. Rev. D91 no. 6, (2015) 065018, arXiv:1411.1669 [hep-th].
  25. P. Di Vecchia, R. Marotta, and M. Mojaza, “Subsubleading soft theorems of gravitons and dilatons in the bosonic string,” JHEP 06 (2016) 054, arXiv:1604.03355 [hep-th].
  26. A. Sen, “Subleading Soft Graviton Theorem for Loop Amplitudes,” arXiv:1703.00024 [hep-th].
  27. A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories,” JHEP 05 (2018) 132, arXiv:1709.03850 [hep-th].
  28. H. Hirai and S. Sugishita, “Conservation Laws from Asymptotic Symmetry and Subleading Charges in QED,” JHEP 07 (2018) 122, arXiv:1805.05651 [hep-th].
  29. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS (2010) 010, arXiv:1102.4632 [gr-qc]. [Ann. U. Craiova Phys.21,S11(2011)].
  30. D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014) 058, arXiv:1406.3312 [hep-th].
  31. M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton theorem,” Phys. Rev. D90 no. 12, (2014) 124028, arXiv:1408.2228 [hep-th].
  32. V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of QED,” Phys. Rev. Lett. 113 no. 11, (2014) 111601, arXiv:1407.3814 [hep-th].
  33. M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New symmetries of quantum gravity?,” Phys. Lett. B764 (2017) 218–221, arXiv:1605.09094 [gr-qc].
  34. M. Campiglia and A. Laddha, “Subleading soft photons and large gauge transformations,” JHEP 11 (2016) 012, arXiv:1605.09677 [hep-th].
  35. E. Conde and P. Mao, “Remarks on asymptotic symmetries and the subleading soft photon theorem,” Phys. Rev. D95 no. 2, (2017) 021701, arXiv:1605.09731 [hep-th].
  36. M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,” JHEP 01 (2017) 036, arXiv:1608.00685 [gr-qc].
  37. E. Conde and P. Mao, “BMS Supertranslations and Not So Soft Gravitons,” arXiv:1612.08294 [hep-th].
  38. A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity,” arXiv:1706.00759 [hep-th].
  39. B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations,” Phys. Rev. Lett. 113 no. 10, (2014) 101601, arXiv:1404.7749 [hep-th].
  40. D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED in Even Dimensions,” arXiv:1412.2763 [hep-th].
  41. D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem,” arXiv:1502.07644 [gr-qc].
  42. K. S. Thorne, “Gravitational-wave bursts with memory: The Christodoulou effect,” Phys. Rev. D45 no. 2, (1992) 520–524.
  43. A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, arXiv:1411.5745 [hep-th].
  44. S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” arXiv:1505.00716 [hep-th].
  45. L. Bieri, D. Garfinkle, and S.-T. Yau, “Gravitational Waves and Their Memory in General Relativity,” arXiv:1505.05213 [gr-qc].
  46. L. Susskind, “Electromagnetic Memory,” arXiv:1507.02584 [hep-th].
  47. M. Hotta, J. Trevison, and K. Yamaguchi, “Gravitational Memory Charges of Supertranslation and Superrotation on Rindler Horizons,” Phys. Rev. D94 no. 8, (2016) 083001, arXiv:1606.02443 [gr-qc].
  48. S. Hollands, A. Ishibashi, and R. M. Wald, “BMS Supertranslations and Memory in Four and Higher Dimensions,” arXiv:1612.03290 [gr-qc].
  49. M. Pate, A.-M. Raclariu, and A. Strominger, “Color Memory: A Yang-Mills Analog of Gravitational Wave Memory,” Phys. Rev. Lett. 119 no. 26, (2017) 261602, arXiv:1707.08016 [hep-th].
  50. M. Pate, A.-M. Raclariu, and A. Strominger, “Gravitational Memory in Higher Dimensions,” JHEP 06 (2018) 138, arXiv:1712.01204 [hep-th].
  51. A. Ball, M. Pate, A.-M. Raclariu, A. Strominger, and R. Venugopalan, “Measuring Color Memory in a Color Glass Condensate at Electron-Ion Colliders,” arXiv:1805.12224 [hep-ph].
  52. N. L Balazs, “Wave propagation in even and odd dimensional spaces,” Proceedings of the Physical Society. Section A 68 (1955)  521.
  53. H. Soodak and M. S. Tiersten, “Wakes and waves in n dimensions,” American Journal of Physics 61 no. 5, (1993) 395–401, https://doi.org/10.1119/1.17230. https://doi.org/10.1119/1.17230.
  54. D. Kapec and P. Mitra, “A d𝑑ditalic_d-Dimensional Stress Tensor for Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th].
  55. M. Campiglia and R. Eyheralde, “Asymptotic U⁢(1)𝑈1U(1)italic_U ( 1 ) charges at spatial infinity,” arXiv:1703.07884 [hep-th].
  56. K. Prabhu, “Conservation of asymptotic charges from past to future null infinity: Maxwell fields,” JHEP 10 (2018) 113, arXiv:1808.07863 [gr-qc].
  57. D. Yoshida and J. Soda, “Electromagnetic Memory Effect Induced by Axion Dark Matter,” arXiv:1704.04169 [gr-qc].
  58. R. M. Wald and A. Zoupas, “A General definition of ‘conserved quantities’ in general relativity and other theories of gravity,” Phys. Rev. D61 (2000) 084027, arXiv:gr-qc/9911095 [gr-qc].
  59. E. Esmaeili, “Asymptotic Symmetries of Maxwell Theory in Arbitrary Dimensions at Spatial Infinity,” arXiv:1902.02769 [hep-th].
  60. M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press, 2014.
Citations (41)

Summary

We haven't generated a summary for this paper yet.