Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety-Guided Deep Reinforcement Learning via Online Gaussian Process Estimation (1903.02526v2)

Published 6 Mar 2019 in cs.LG, cs.AI, and cs.RO

Abstract: An important facet of reinforcement learning (RL) has to do with how the agent goes about exploring the environment. Traditional exploration strategies typically focus on efficiency and ignore safety. However, for practical applications, ensuring safety of the agent during exploration is crucial since performing an unsafe action or reaching an unsafe state could result in irreversible damage to the agent. The main challenge of safe exploration is that characterizing the unsafe states and actions is difficult for large continuous state or action spaces and unknown environments. In this paper, we propose a novel approach to incorporate estimations of safety to guide exploration and policy search in deep reinforcement learning. By using a cost function to capture trajectory-based safety, our key idea is to formulate the state-action value function of this safety cost as a candidate Lyapunov function and extend control-theoretic results to approximate its derivative using online Gaussian Process (GP) estimation. We show how to use these statistical models to guide the agent in unknown environments to obtain high-performance control policies with provable stability certificates.

Citations (18)

Summary

We haven't generated a summary for this paper yet.