Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DepthwiseGANs: Fast Training Generative Adversarial Networks for Realistic Image Synthesis (1903.02225v1)

Published 6 Mar 2019 in cs.CV and eess.IV

Abstract: Recent work has shown significant progress in the direction of synthetic data generation using Generative Adversarial Networks (GANs). GANs have been applied in many fields of computer vision including text-to-image conversion, domain transfer, super-resolution, and image-to-video applications. In computer vision, traditional GANs are based on deep convolutional neural networks. However, deep convolutional neural networks can require extensive computational resources because they are based on multiple operations performed by convolutional layers, which can consist of millions of trainable parameters. Training a GAN model can be difficult and it takes a significant amount of time to reach an equilibrium point. In this paper, we investigate the use of depthwise separable convolutions to reduce training time while maintaining data generation performance. Our results show that a DepthwiseGAN architecture can generate realistic images in shorter training periods when compared to a StarGan architecture, but that model capacity still plays a significant role in generative modelling. In addition, we show that depthwise separable convolutions perform best when only applied to the generator. For quality evaluation of generated images, we use the Fr\'echet Inception Distance (FID), which compares the similarity between the generated image distribution and that of the training dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mkhuseli Ngxande (4 papers)
  2. Jules-Raymond Tapamo (2 papers)
  3. Michael Burke (36 papers)
Citations (8)